Обмен веществ — анаболизм, катаболизм, скорость метаболизма в зависимости от саматотипа и факторы влияющие на скорость обмена веществ


Метаболизм

Живые существа способны использовать только два вида энергии: световую (энергию солнечного излучения) и химическую (энергию связей химических соединений). По этому признаку организмы делятся на две группы ― фототрофы и хемотрофы.

Главным источником структурных молекул является углерод. В зависимости от источников углерода живые организмы делят на две группы: автотрофы, использующие неорганический источник углерода (диоксид углерода), и гетеротрофы, использующие органические источники углерода.

Процесс потребления энергии и вещества называется питанием. Известны два способа питания:

  • голозойный ― посредством захвата частиц пищи внутрь тела;
  • голофитный ― без захвата, посредством всасывания растворенных пищевых веществ через поверхностные структуры организма.

Разберемся с процессами, связанными с проникновением веществ в клетку.

Транспорт веществ в клетку

Существует два типа проникновения веществ в клетку через мембраны: пассивный и активный транспорт.

Пассивный транспорт

Пассивный транспорт — перенос веществ по градиенту концентрации из области высокой концентрации в область низкой без затрат энергии (например, диффузия, осмос).

Диффузия — пассивное перемещение вещества из участка большей концентрации к участку меньшей концентрации.

По пути простой диффузии частицы вещества перемещаются сквозь билипидный слой мембраны. Направление простой диффузии определяется только разностью концентраций вещества по обеим сторонам мембраны. Путём простой диффузии в клетку проникают гидрофобные вещества (O2, N2, бензол) и полярные маленькие молекулы (CO2, H2O, мочевина). Не проникают полярные относительно крупные молекулы (аминокислоты, моносахариды), заряженные частицы (ионы) и макромолекулы (ДНК, белки).

Простая диффузия представляет собой процесс, при котором газ или растворенные вещества распространяются и заполняют весь объём вещества. Молекулы или ионы, растворённые в жидкости, находясь в хаотичном состоянии, сталкиваются со стенками клеточной мембраны, что может вызвать двоякий исход: молекула либо отскочит, либо пройдёт через мембрану. Если вероятность последнего велика, то говорят, что мембрана проницаема для данного вещества.

Если концентрация данного вещества по обе стороны мембраны различна, то возникает процесс, который способствует выравниванию концентрации. Через клеточную мембрану проходят как хорошо растворимые (гидрофильные), так и нерастворимые (гидрофобные) вещества.

В случае, когда мембрана плохо проницаема, либо непроницаема для данного вещества, она подвергается действию осмотических сил. При более низкой концентрации вещества в клетке она сжимается, при более высокой концентрации — впускает внутрь воду.

Через биологические мембраны путём простой диффузии проникают многие вещества. Однако вещества, которые имеют высокую полярность и органическую природу, не могут проникать через мембрану путем простой диффузии, эти вещества попадают в клетку путем облегчённой диффузии. Облегчённой диффузией называется диффузия вещества по градиенту его концентрации, которая осуществляется с помощью специальных погружённых в мембрану транспортных белков-переносчиков. Участие белков-переносчиков обеспечивает более высокую скорость облегчённой диффузии по сравнению с простой пассивной диффузией. Облегчённая диффузия не требует специальных энергетических затрат за счёт гидролиза АТФ. Эта особенность отличает облегчённую диффузию от активного трансмембранного транспорта.

Осмос — процесс односторонней диффузии через полупроницаемую мембрану молекул растворителя в сторону бо́льшей концентрации растворённого вещества из объёма с меньшей концентрацией растворенного вещества.

Перенос растворителя через мембрану обусловлен осмотическим давлением. Это осмотическое давление возникает из-за того, что система пытается выровнять концентрацию раствора в обеих средах, разделенных мембраной, и описывается вторым законом термодинамики. Оно равно избыточному внешнему давлению, которое следует приложить со стороны раствора, чтобы прекратить процесс, то есть создать условия осмотического равновесия. Превышение избыточного давления над осмотическим может привести к обращению осмоса — обратной диффузии растворителя.

Активный транспорт

Активный транспорт — перенос вещества через клеточную или внутриклеточную мембрану, или через слой клеток, протекающий против градиента концентрации из области низкой концентрации в область высокой, т. е. с затратой свободной энергии организма. В большинстве случаев источником энергии служит энергия макроэргических связей АТФ.

Калий-натриевый насос

К веществам, активно транспортируемым, по крайней мере, через некоторые клеточные мембраны, относят ионы натрия, калия, кальция, железа, водорода, хлора, йода, мочевой кислоты, некоторые сахара и большинство аминокислот.

Механизм активного транспорта лучше всего изучен для натрий-калиевого насоса (Na+/K+-нaсоса) — транспортного процесса, который выкачивает ионы натрия через мембрану клетки наружу и в то же время закачивает в клетку ионы калия. Этот насос отвечает за поддержание различной концентрации ионов натрия и калия по обе стороны мембраны, а также за наличие отрицательного электрического потенциала внутри клеток.

Рассмотрим работу насоса. Когда 2 иона калия связываются с белком-переносчиком снаружи и 3 иона натрия связываются с ним внутри, активируется АТФ-азная функция белка. Это ведет к расщеплению 1 молекулы АТФ до АДФ с выделением энергии высокоэнергетической фосфатной связи. Полагают, что эта освобожденная энергия вызывает химическое и конформационное изменение молекулы белка-переносчика, в результате 3 иона натрия перемещаются наружу, а 2 иона калия — внутрь клетки.

Калий натриевый насос

Рис. 1. Калий натриевый насос.

Фагоцитоз и пиноцитоз

Фагоцитоз и пиноцитоз также относятся к активному транспорту.

Фагоцитоз

Фагоцитоз (греч. фаго – пожирать) – поглощение клеткой твердых органических веществ. Оказавшись около клетки, твердая частица окружается выростами мембраны, или под ней образуется углубления мембраны. В результате частица оказывается заключенной в мембранный пузырек – фагосому – внутри клетки. Фагоцитоз свойственен простейшим, кишечнополостным, лейкоцитам, а также клеткам капилляров костного мозга, селезенки, печени, надпочечников.

Пиноцитоз

Пиноцитоз (греч. пино – пью) – это процесс поглощения клеткой мелких капель жидкости с растворенными в ней высокомолекулярными веществами. Осуществляется путем захвата этих капель выростами цитоплазмы. Захваченные капли погружаются в цитоплазму и там усваиваются. Явление пиноцитоза свойственно животным клеткам и одноклеточным простейшим.

Рис.2. Фагоцитоз.

Рис. 3. Пиноцитоз.

Суть

Катаболизм – этопрямая составляющая метаболических процессов в организме. Что она из себя представляет? Все очень просто – это оптимизация ресурсов. Наш организм работает, как маятник, постоянно создавая новые клетки, и разрушая старые.

Фактически за 5 лет вы полностью обновляетесь, являясь другим человеком. Но и это еще не все.

В биохимическом понимании катаболизм — это распад сложных веществ на более простые или же окисление различных молекул. Процесс протекает с высвобождением энергии:

  • тепла;
  • молекул АТФ — основного источника энергии любой биохимической реакции.

Катаболизм и находятся в постоянном равновесии, и напрямую зависят от следующих факторов:

  • Гормонов, так как указанные вещества — главные регуляторы катаболизма и анаболизма.
  • Необходимости в изменении баланса.
  • Питания.
  • Скорости метаболизма.
  • Количества сна.
  • Других факторов.
  • Рассмотрим на простом примере процессы оптимизации ресурсов организма. Изначально, в течение дня, организм стремиться к расщеплению энергии и синтезу новых клеток.

    В ночное время, происходит перезагрузка, и он начинает убивать ненужные клетки, расщепляя их, и подготавливаясь к обновлению.

    В случае возникновения стрессовых нагрузок, катаболические процессы значительно ускоряются.

    Однако, в этом случае, ускорение катаболизма происходит в качестве подготовки к мощному анаболическому скачку. Умертвляются и разрушаются все клетки, которые неспособны выдерживать новые уровни нагрузок, заменяясь более мощными и сильными.

    Нагрузки – являются именно тем фактором, который влияет на сдвиг баланса между анаболическими и катаболическими процессами.

    Когда нагрузки в организме проходят (например, человек перестает заниматься спортом), то умный организм оптимизирует ресурсы для того, чтобы в случае голодовки или другого мощного стресса мог выжить. И все мы наблюдаем разрушение мышц. Особенно это хорошо заметно, если следить за атлетами после окончания их карьеры.

    Обычно они теряет до 40% от наработанной мышечной массы.

    Важно понимать, что физические нагрузки – не единственный фактор, который изменяет баланс между катаболизмом и анаболизмом. Любое изменение в режиме дня или питании может сдвинуть ползунок в ту или иную сторону.

    Превращение веществ в клетке

    Пищевые вещества, попавшие в организм, вовлекаются в процессы метаболизма.

    Метаболизм

    Метаболизм представляет собой совокупность взаимосвязанных и сбалансированных процессов, включающих разнообразные химические превращения в организме.

    Синтез веществ в клетке

    Анаболизм

    Реакции синтеза, осуществляющиеся с потреблением энергии, составляют основу анаболизма (пластического обмена, или ассимиляции).

    Процесс синтеза веществ = пластический обмен = ассимиляция = анаболизм

    Чтобы что-то построить, надо затратить энергию — этот процесс идет с поглощением энергии.

    Тип организмаПример пластического обмена
    АвтотрофыФотосинтез
    ГетеротрофыСинтез белка

    Катаболизм

    Противоположный анаболизму процесс –

    Катаболизм

    катаболизм – процесс расщепления веществ с высвобождением энергии (энергетический обмен, или диссимиляция).

    Процесс расщепления = энергетический обмен = диссимиляция = катаболизм

    Это процесс, при котором сложные вещества разлагаются на простые. “Ломать — не строить”, так что энергия при этом выделяется.

    В основном, это реакции окисления, происходят они в митохондриях, самый простой пример — дыхание. При дыхании сложные органические вещества расщепляются до простых, выделяется углекислый газ и энергия.

    Вообще, эти два процесса взаимосвязаны и переходят один в другой. Суммарно уравнение метаболизма — обмена веществ в клетке — можно записать так:

    катаболизм + анаболизм = обмен веществ в клетке = метаболизм

    Рассмотрим эти процессы подробнее.

    Энергетический обмен = Диссимиляция = Катаболизм

    Этот процесс идет в несколько этапов, и нам нужно рассмотреть, как он проходит в различных организмах.

    Организмов будет всего 2 — многоклеточный (человек, например) и одноклеточный (растительный и животный).

    И запомните, сочетание букв АТФ (аденозинтрифосфат) — означает “энергию”. Просто эта энергия заключена в молекуле.

    Анаболизм

    Катаболические пути влияют на превращение пищевых материалов в необратимые интермедиаты. Анаболические пути, с другой стороны, представляют собой последовательности катализируемых ферментами реакций, в которых компонентные строительные блоки больших молекул или макромолекул (например, белков, углеводов и жиров) образуются из одних и тех же промежуточных продуктов.

    Таким образом, катаболические маршруты имеют четко определенные начала, но не имеют однозначно идентифицируемых конечных продуктов; анаболические пути, с другой стороны, приводят к четко различимым конечным продуктам от диффузных начал. Два типа пути связаны между собой реакциями переноса фосфатов, в которых участвуют АДФ (аденозиндифосфат), АМФ (аденонмонофосфорная кислота) и АТФ, а также посредством переносов электронов, которые позволяют уменьшить количество восстанавливающих эквивалентов (то есть атомов водорода или электронов), которые высвобождаются во время катаболических реакций. используется для биосинтеза.

    Но, хотя катаболические и анаболические пути тесно связаны между собой, и общий эффект одного типа маршрута явно противоположен другому, у них мало общих шагов.

    Анаболический путь для синтеза конкретной молекулы обычно начинается с промежуточных соединений, весьма отличных от тех, которые образуются в результате катаболизма этой молекулы; например, микроорганизмы катаболизируют ароматические (то есть содержащие кольцевую или циклическую структуру) аминокислоты до ацетилкофермента А и промежуточного соединения цикла Кребса. Биосинтез этих аминокислот, однако, начинается с соединения, полученного из пирувата, и промежуточного соединения метаболизма пентозы (общее название для сахаров с пятью атомами углерода). Аналогично, гистидин синтезируется из пентозного сахара, но катаболизируется в α-оксоглутарат.

    Даже в тех случаях, когда продукт катаболизма используется в анаболическом пути, возникают различия; таким образом, жирные кислоты, которые катаболизируются в ацетил-кофермент А, синтезируются не непосредственно из ацетил-кофермента А, а из его производного, малонил-кофермента А ( см. ниже липидные компоненты ). Кроме того, даже ферменты, которые катализируют очевидно идентичные стадии в катаболических и анаболических путях, могут проявлять различные свойства. В общем, следовательно, путь вниз (катаболизм) отличается от пути вверх ( анаболизм ). Эти различия важны, потому что они позволяют регулировать катаболические и анаболические процессы в клетке.

    Биологически активные добавки

    Катаболизм мышц можно побороть приемом специальных добавок к питанию под названием протеин, заменимые и незаменимые аминокислоты. О них написано немало статей и отзывов, и сделать правильный выбор начинающему атлету помогут специализированные источники информации (а также тренер). Остается лишь пояснить, что в процессе сжигания мышц для получения энергии, при попадании подготовленного белка извне мышца может восстановиться.

    Узнав про катаболизм, что это и как его правильно использовать, остается выяснить, какие ещё внешние факторы влияют на обмен веществ и могут запускать разрушение белка в организме.

    1. Недосыпание. Во сне организм не отдыхает, как считает половина населения планеты, а перераспределяет ресурсы. После тяжелой тренировки он восстанавливает и укрепляет мышцы. Или продолжает добывать энергию из жиров по ранее запущенной программе. Соответственно, недосыпание нарушает важные процессы и приводит к стрессу.
    2. Стресс. Так уж устроен организм, что в случае стресса вырабатывается гормон кортизол, который, разрушая белок, участвует в синтезе глюкозы. А неиспользованная глюкоза синтезируется в жировые клетки.
    3. Поддержка скорости обмена веществ. Не зря многие тренеры настоятельно рекомендуют выпивать по 3-4 литра воды в день и употреблять пищу в небольших количествах, разбив её на несколько приемов. Все это заставляет организм без остановки проводить синтез сложных веществ. Необходимые элементы быстро доставляются в места назначения, а все шлаки выводятся из организма естественным путем.

    Значение АТФ в обмене веществ

    Энергия, высвобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме высокоэнергетических соединений, как правило, в форме аденозинтрифосфата (АТФ). По своей химической природе АТФ относится к мононуклеотидам и состоит из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты.

    Энергия, высвобождающаяся при гидролизе АТФ, используется клеткой для совершения всех видов работы. Значительные количества энергии расходуются на биологические синтезы. АТФ является универсальным источником энергообеспечения клетки. Запас АТФ в клетке ограничен и пополняется благодаря процессу фосфорилирования, происходящему с разной интенсивностью при дыхании, брожении и фотосинтезе. АТФ обновляется чрезвычайно быстро (у человека продолжительность жизни одной молекулы АТФ менее 1 минуты).

    Отличия катаболизма от анаболизма

    Данные процессы противоположные по своей природе. Анаболизм — это процесс синтеза более сложных веществ из простых. А что такое катаболизм? Это обратный процесс. Примером анаболизма может служить набор мышечной массы. А в качестве примера для катаболизма можно привести ряд важных для организма человека реакций.

    Например, многие люди любят картошку, верно? Одним из основных веществ в ней, создающих приятные вкусовые качества, является крахмал. Данное вещество является полисахаридом. Это означает, что оно является очень сложным по своей природе углеводом. Соответственно, оно состоит из множества других углеводов, и его можно разложить на менее сложные вещества. В самом конце крахмал разлагается организмом до и есть катаболизм.

    Энергетический обмен в клетке. Синтез АТФ.

    Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования, т.е. присоединения неорганического фосфата к АДФ. Энергия для фосфорилирования АДФ образуется в ходе энергетического обмена. Энергетический обмен, или диссимиляция, представляет собой совокупность реакции расщепления органических веществ, сопровождающихся выделением энергии. В зависимости от среды обитания диссимиляция может протекать в два или три этапа.

    У большинства живых организмов ― аэробов, живущих в кислородной среде, ― в ходе диссимиляции осуществляется три этапа: подготовительный, бескислородный, кислородный. У анаэробов, обитающих в среде лишенной кислорода, или у аэробов при его недостатке, диссимиляция протекает лишь в два первых этапа с образованием промежуточных органических соединений, еще богатых энергией.

    Первый этап – подготовительный. В желудочно-кишечном тракте многоклеточных организмов он осуществляется пищеварительными ферментами. У одноклеточных – ферментами лизосом. На первом этапе происходит расщепление белков до аминокислот, жиров до глицерина и жирных кислот, полисахаридов до моносахаридов, нуклеиновых кислот до нуклеотидов. Этот процесс называется пищеварением.

    Второй этап – бескислородный (гликолиз). Его биологический смысл заключается в начале постепенного расщепления и окисления глюкозы с накоплением энергии в виде 2 молекул АТФ. Гликолиз происходит в цитоплазме клеток. Он состоит из нескольких последовательных реакций превращения молекулы глюкозы в две молекулы пировиноградной кислоты (пирувата) и две молекулы АТФ, в виде которой запасается часть энергии, выделившейся при гликолизе:

    Остальная энергия рассеивается в виде тепла.

    В клетках дрожжей и растений (при недостатке кислорода) пируват распадается на этиловый спирт и углекислый газ. Этот процесс называется спиртовым брожением.

    Энергии, накопленной при гликолизе, слишком мало для организмов, использующих кислород для своего дыхания. Вот почему в мышцах животных, в том числе и у человека, при больших нагрузках и нехватке кислорода образуется молочная кислота (С3Н6O3), которая накапливается в виде лактата. Появляется боль в мышцах. У нетренированных людей это происходит быстрее, чем у людей тренированных.

    Третий этап – кислородный, состоящий из двух последовательных процессов – цикла Кребса, названного по имени Нобелевского лауреата Ганса Кребса, и окислительного фосфорилирования. Его смысл заключается в том, что при кислородном дыхании пируват окисляется до окончательных продуктов – углекислого газа и воды, а энергия, выделяющаяся при окислении, запасается в виде 36 молекул АТФ. (34 молекулы в цикле Кребса и 2 молекулы в ходе окислительного фосфорилирования). Эта энергия распада органических соединений обеспечивает реакции их синтеза в пластическом обмене. Кислородный этап возник после накопления в атмосфере достаточного количества молекулярного кислорода и появления аэробных организмов.

    Цикл Кребса представляет фазу III высвобождения энергии из продуктов питания. Каждый оборот этого цикла инициируется образованием цитрата с шестью атомами углерода из оксалоацетата (с четырьмя атомами углерода) и ацетилкофермента А; последующие реакции приводят к превращению оксалоацетата и образованию двух молекул углекислого газа. Атомы углерода, которые входят в образование углекислого газа, больше не доступны для клетки. В сопутствующее ступенчатые окисления, в которых атомы водорода или электроны удаляются из промежуточных соединений. Образующиеся во время цикла и через систему носителей, в конечном итоге, переносятся в кислород с образованием воды — количественно являются наиболее важным средством генерирования АТФ из АДФ и неорганического фосфата. Эти события известны как терминальное дыхание и окислительное фосфорилирование.

    Окислительное фосфорилирование, или клеточное дыхание происходит на внутренних мембранах митохондрий, в которые встроены молекулы-переносчики электронов. В ходе этой стадии освобождается большая часть метаболической энергии. Молекулы-переносчики транспортируют электроны к молекулярному кислороду. Часть энергии рассеивается в виде тепла, а часть расходуется на образование АТФ.

    Суммарная реакция энергетического обмена:

    Катаболизм по науке

    Катаболизм предназначен для того, чтобы организм мог получать энергию. По сути, любые вещества, которые перерабатываются нашим организмом, являются источником АТФ — аденозинтрифосфата. Это специальные молекулы, предназначенные для аккумулирования, то есть накопления энергии в организме. Количество данного вещества достаточно ограниченное. Поэтому ему нужно постоянно пополняться. И это можно сделать только одним путем — с помощью катаболизма. Процесс происходит в несколько этапов. Рассмотрим подробнее все этапы катаболизма.

    Пластический обмен

    Пластический обмен = ассимиляция = анаболизм

    Пластический обмен, или ассимиляция, представляют собой совокупность реакций, обеспечивающих синтез сложных органических соединений в клетке. Гетеротрофные организмы строят собственные органические вещества из органических компонентов пищи. Гетеротрофная ассимиляция сводится, по существу, к перестройке молекул:

    Органические вещества пищи (белки, жиры, углеводы) → пищеварение → Простые органические молекулы (аминокислоты, жирные кислоты, моносахара) → биологические синтезы → Макромолекулы тела (белки, жиры, углеводы).

    Автотрофные организмы способны полностью самостоятельно синтезировать органические вещества из неорганических молекул, потребляемых из внешней среды. В процессе автотрофной ассимиляции реакции фото- и хемосинтеза, обеспечивающие образование простых органических соединений, предшествует биологическим синтезам молекул макромолекул:

    Неорганические вещества (углекислый газ, вода) → фотосинтез, хемосинтез → Простые органические молекулы (аминокислоты, жирные кислоты, моносахара)→ биологические синтезы → Макромолекулы тела (белки, жиры, углеводы).

    Фотосинтез

    Фотосинтез ― синтез органических соединении из неорганических, идущий за счет энергии клетки. Ведущую роль в процессах фотосинтеза играют фотосинтезирующие пигменты, обладающие уникальным свойством ― улавливать свет и превращать его энергию в химическую энергию. Фотосинтезирующие пигменты представляют собой довольно многочисленную группу белково-подобных веществ. Главным и наиболее важным в энергетическом плане является пигмент хлорофилл, встречающийся у всех фототрофов, кроме бактерий-фотосинтетиков. Фотосинтезирующие пигменты встроены во внутреннюю мембрану пластид у эукариот или во впячивания цитоплазматической мембраны у прокариот.

    В процессе фотосинтеза кроме моносахаридов (глюкоза и др.), которые превращаются в крахмал и запасаются растением, синтезируются мономеры других органических соединении ― аминокислоты, глицерин и жирные кислоты. Таким образом, благодаря фотосинтезу растительные, а точнее ― хлорофиллосодержащие, клетки обеспечивают себя и все живое на Земле необходимыми органическими веществами и кислородом.

    Хемосинтез

    Хемосинтез также представляет собой процесс синтеза органических соединений из неорганических, но осуществляется он не за счет энергии света, а за счет химической энергии, получаемой при окислении неорганических веществ (серы, сероводорода, железа, аммиака, нитрита и др.). Наибольшее значение имеют нитрифицирующие, железо- и серобактерии.

    Высвобождающаяся в ходе реакций окисления энергия запасается бактериями в виде АТФ и используется для синтеза органических соединений. Хемосинтезирующие бактерии играют очень важную роль в биосфере. Они участвуют в очистке сточных вод, способствуют накоплению в почве минеральных веществ, повышают плодородие почвы.

    Первый этап

    Первый этап катаболизма — это расщепление полученных из пищи веществ с помощью специальных ферментов. Для некоторых веществ роль фермента могут выполнять гормоны. Например, сахар расщепляет инсулин, вырабатываемый поджелудочной железой. При этом для данного этапа характерно только выделение тепла. Оно не пропадает бесследно.

    В частности, оно используется для поддержания нормального уровня жизнедеятельности организма. И мы данный процесс чувствуем как сохранение определенной температуры тела. При этом данный круг достаточно интересный. Ведь катаболизм может осуществляться только при наличии определенной температуры. Теплота является естественным катализатором любых химических процессов в организме или во внешней среде. Процесс расщепления жизненно необходимых веществ является достаточно сложным, поэтому без второго этапа не обойтись.

    Продукты для замедления катаболизма

    Как мы раньше уже упоминали, в спортивных дисциплинах важно соблюдать правильный баланс между анаболизмом и катаболизмом.

    Однако для этого не обязательно принимать анаболики. Достаточно использовать продукты, которые снижают скорость катаболизма, тем самым провоцируя положительный баланс анаболических процессов по отношению к катаболизму.

    Продукт Принцип воздействия
    Корень
    КофеинЯвляется мощным адреналиновым стимулятором
    ЛимонВитамин С – замедляет процессы окисления и распада мышц
    Мясо
    ЯйцаБелковая структура, которая позволяет сместить баланс анаболизма по отношению к катаболизму
    МолокоБелковая структура, которая позволяет сместить баланс анаболизма по отношению к катаболизму
    ТрибулусЯвляется прямым стимуляторов выработки андрогенного гормона
    Сложные углеводыПрекращает распад мышечных структур для получения энергии
    Полинасыщенные омега 9 кислотыЯвляются предвестниками холестерина
    Продукты содержащие полезный холестеринХолестерин – позволяет значительно увеличить выработку анаболических гормонов, снизив уровень катаболизма практически до нуля

    Итог

    К сожалению, перехитрить организм и остановить катаболизм насовсем не получится. При полной остановке катаболизма, организм начинает вырабатывать раковые клетки (которые являются аномальными клетками, вырабатываемыми как супервосстановление иммунитета). Поэтому к этому не нужно стремиться. НЕ нужно стремиться и к замедлению катаболизма, так как это уменьшает и скорость анаболизма, что ведет к замедлению прогресса в спортивных дисциплинах. Достаточно просто, создавать положительный анаболический фон при . В этом случае, вопросы катаболизма не будут стоять.

    Вывод: достижение результата – это не замедление катаболизма, а ускорение анаболизма.

    А метаболизм – это основа всех процессов жизнедеятельности организма:

    • превращение энергии и веществ в живом организме, что позволяет клеткам, расти, развиваться и сохранять свою структуру;
    • обмен энергией и веществами между самим организмом и окружающей средой.

    На скорость метаболических реакций оказывают влияние следующие факторы:

    • пол:
      основные метаболические процессы у мужчин протекают на 10 – 20 % выше, чем у женщин;
    • возраст:
      с 25 – 30 – ти лет скорость метаболических процессов снижается в среднем на 3%, это происходит каждые десять лет;
    • вес:
      чем выше общая масса внутренних органов, мышц и костей, тем выше будет катаболизм;
    • регулярные занятия спортом ускоряют метаболизм – в первые два – три часа в среднем на 30%, далее в течение суток – на 5%.

    Взаимосвязь анаболизма и катаболизма

    Анаболизм и катаболизм – два абсолютно противоположных процесса, но несмотря на это, они тесно взаимосвязаны.

    В результате катаболических реакций образуются вещества и энергия, которые используются при анаболическом процессе. А анаболизм осуществляет поставку ферментов и веществ, необходимых для катаболизма.

    Так, например, организм человека может покрыть свою потребность в 14-ти аминокислотах

    . Дисбаланс этих процессов может привести к гибели организма.

    Давайте разберемся, и чем он отличается от остальных добавок.

    Научитесь . Это не так сложно, как кажется.

    Что предпринять, чтобы убрать пивной живот? Для начала прочитать это: . Все о питании и нужных упражнениях.

    Физиология

    Физиология катаболизма заключается в расщеплении веществ с последующим их окислением. В процессе , любая деятельность провоцирует начало общего пути катаболизма. В ходе стрессовой ситуации (мышечного/умственного напряжения), организм начинает потреблять огромное количество гликогена. В последствии, в случае достаточного наличия кислорода в крови, в ход идет расщепление АТФ мышечной ткани, что и провоцирует разрушение и микротравмы мышечной ткани.

    Примечание: катаболизм – это не всегда плохо. Ведь процесс касается не только мышечной, но и жировой ткани. В частности, многие диеты и тренировочные комплексы на сушку подразумевают активизацию катаболических процессов, для выведения из открытых инсулином клеток, липидов с последующим расщеплением их на энергию, и окислением.

    Рейтинг
    ( 2 оценки, среднее 5 из 5 )
    Понравилась статья? Поделиться с друзьями: